Indian Statistical Institute, Bangalore B. Math. First Year, Second Semester Analysis II

Mid-term Examination Maximum marks: 100 Date : Feb. 26, 2018 Time: 3 hours

Here the set of natural numbers is denoted by \mathbb{N} and the set of real numbers is denoted by \mathbb{R} .

1. Compute upper and lower Riemann integrals of following function and determine as to whether it is Riemann integrable or not: Let $f : [0, 2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 5 & \text{if } x^2 \text{ is rational.} \\ 7 & \text{otherwise.} \end{cases}$$

[15]

- 2. Let a < b be real numbers. Suppose $f : [a, b] \to \mathbb{R}$ is monotonic. Show that f is Riemann integrable. [15]
- 3. Let a < b and c < d, be real numbers and let $u : [a, b] \to [c, d]$ be a continuously differentiable function. Let $f : [c, d] \to \mathbb{R}$ be a continuous function. Show that

$$\int_{a}^{b} f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(y)dy.$$
[15]

- 4. Define $d : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by $d(m, n) = |\frac{1}{m^2} \frac{1}{n^2}|$ Show that d defines a metric on \mathbb{N} . Show that \mathbb{N} complete with respect to this metric. [15]
- 5. On \mathbb{R}^2 , consider the usual metric d, defined by

$$d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

For the following subsets A, B of \mathbb{R}^2 , determine the closure and the interior of the closure.

- (i) $A = \{(x_1, x_2) : x_1 + x_2 \text{ is rational.} \}$
- (ii) $B = \{(x_1, x_2) : |x_1| < |x_2|\}.$

[15]

- 6. Denote interior of a subset S of a metric space by S^o . Let C, D be subsets of a metric space (Y, d). Show that $(C \bigcup D)^o \supseteq C^o \bigcup D^o$. Give an example where $(C \bigcup D)^o \neq C^o \bigcup D^o$. [15]
- 7. Let (X, d_1) be a metric space. Define d_2 on $X \times X$ by

$$d_2(x,y) = \begin{cases} d_1(x,y) & \text{if } 0 \le d_1(x,y) \le 1\\ 1 & \text{Otherwise.} \end{cases}$$

Show that d_2 is a metric on X. Show that a set A is open in (X, d_1) iff it is open in (X, d_2) .

[15]